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The only certainty in most of our formation evaluations is the presence of uncertainty and
how that issue is (or is not) addressed. At the simplest level one may estimate the Best and
Worst Case, for each input attribute, and then bound the evaluation with the resulting extreme
values, even as we recognize that the simultaneous occurrence of multiple “best” or “worst”
values is an unlikely event.

It is in fact relatively simple to address the uncertainty question in comprehensive, realistic
and quantitative fashion, and to further identify where to focus time, and money, in search of
an improved evaluation.

At the simplest level our Sw
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estimates are compromised
by uncertainty in the various
Archie equation attributes.
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In an earlier article (Risky
Business) we took the
derivative of Archie’s equation
(the same approach will
suffice for a shaly sand
equation), and calculated the
individual impact of each
term’s uncertainty upon S, to
identify where the biggest
bang for the buck, in terms of
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*“a”, R,, and R, are assumed to be ‘well
known’, but may be varied by a straight-
forward extension of the technique

*With these specifications, there is a 95%
probability that S, is bounded by 0.357 +/—
2(0.0382) & 0.28< S, <0.43
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a core analyses program or suite of potential logs, was to be found. At that time we noted the
‘link between parameters, in that the relative importance of a single attribute, can be

dependent upon the magnitude of another attribute, so that the characterization must be
done for locally specific conditions.

An alternative approach is Monte Carlo simulation, which can be implemented with routine
Excel spreadsheet functions. The Monte Carlo method randomly assigns values, according to
user specified probability distributions, to each of the input parameters and then calculates the
result. When the simulation is repeated a statistically significant number of times (results
herein are based upon 2000 passes, which Excel handles without a problem), one is able to
determine the likely outcome within any specific probability band, and to further identify
which parameter is dominating the uncertainty (and hence where time and money is most
efficiently directed for an improved result).

As an example, with the specifications tabulated in Figure 1, there is a 95% probability (+/- two
standard deviations) that 0.28 < S,, < 0.43, whereas the Best / Worst approach would bound
the results with 0.24 < S, < 0.50; the difference being the unlikely event of multiple,
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simultaneous Best or Worst events. Not only does Monte Carlo give us a more realistic
summary, but by varying the input standard deviations (uncertainties), one is able to identify
where to most efficiently concentrate time / money in an effort to improve results.

Monte Carlo Technique

The Monte Carlo method relies on repeated random sampling of user specified input
probability distributions to model expected results. This approach is attractive when it is
infeasible or impossible to compute an exact result with a deterministic algorithm.

An advantage of Monte Carlo is that any type of distribution can be used to characterize the
uncertainty specification of input parameters, for example normal, log normal, etc; an issue
since the phenomena governing frequency distributions in nature often favor log-normal
(Limpert et al, 2001).

As illustrated in Figure 1, Monte Carlo also allows one to quantify the upside and downside
better than a Best / Worst approach, and to recognize which distribution (parameter) is
dominating the result uncertainty.

A limitation of Monte Carlo is that special software is typically utilized (commercial add-ons to
Excel, etc), and is often not even an option in commercially available petrophysics s/w
packages. Common oilfield distributions, however, such as Normal, Log Normal and Triangle are
available in Excel and it is straight-forward to implement Monte Carlo within the Excel
framework. In this approach, one remains in the familiar Excel environment, and actually
leverages their Excel skill set via the additional hands-on experience within the platform.

A discussion of the Monte Carlo method can be found in Decision Analysis for Petroleum
Exploration by Paul Newendorp & John Schuyler, and a collection of articles addressing
exploration risk can be found in The Business of Petroleum Exploration published by the AAPG,
Tulsa, Oklahoma.

Additional information may be found in the References, with useful on-line reference material
to be found at the following links.

e http://www.enrg.Isu.edu/pttc/

e http://www.mrexcel.com/

e http://people.stfx.ca/bliengme/exceltips.htm

e http://office.microsoft.com/en-us/excel/HA011118931033.aspx

e http://www.statsoft.com/textbook/stathome.html

e http://en.wikipedia.org/wiki/Monte_carlo_simulation

e http://www.ipp.mpg.de/de/for/bereiche/stellarator/Comp_sci/CompScience/csep/csep
1.phy.ornl.gov/mc/mc.html

e http://www.sitmo.com/eqcat/15

e http://www.riskglossary.com/link/monte_carlo_method.htm

e http://www.chem.unl.edu/zeng/joy/mclab/mcintro.html
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The Gaussian or Normal Distribution

For illustration purposes, we focus here on the bell shaped Gaussian distribution. Log Normal or
Triangular distributions are easily handled with a simple change of Excel functions.

Gauss was a child prodigy and perhaps the greatest mathematician since antiquity
(http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss). When the dwarf planet Ceres was
discovered, and observed for only a few days before vanishing, Gauss was able to
mathematically predict where it would be found a year later, and missed the mark by only half
a degree.

The bell shaped, or normal, probability distribution, is the most widely used family of statistical
distributions and came to be referred to as Gaussian because he analyzed astronomical data
within that context.

Two parameters characterize the Gaussian distribution, the ‘mean’ and ‘variance’: Figure 2

Figure 2 Excel’s NormDist function

Petroleum applications typically use “normal”, “log normal”, and “triangular” [NORMDIST(x, mean,
statistical distributions.

o standard_dev, cumulative
*Probably the best known statistical distribution is the “bell shaped” normal - ’ )]

distribution, whose probability density function is described by: calculates both the probability
1 ) o density, and cumulative
_ S == )1 207 . . “»
Sy = o\2r " 1 t probability, for a specified “x

_ - value with given mean and
*Two parameters characterize the distribution L
standard deviation (standard

the “mean” value p, L. .
«the variance represented by c2. deviation belng the Square

*The square root of the variance is the standard deviation. root of the va r'ance): F'gure 3.

http://www.enrg.Isu.edu/pttc/ Setting the Iogical variable

“cumulative” to “ ”in the preceding expression will yield the “probability mass function”,

while setting “cumulative” to “true” returns the “cumulative” distribution.

Be aware that Excel 2007 is used for these illustrations and while there is a Compatibility Mode
for earlier Excel versions, it is conceivable that screens could differ. For greater clarity, the
graphics / text in Figure 3 are color coded, and in each case (true & false) the Excel cursor has
been placed in a calculation cell, so that the functional form of NormDist is displayed at the top
of the respective screen capture.

As an illustrative interpretation of the cumulative distribution, we recognize (Figure 3, right
side) that the Cumulative Probability (vertical axis) has reached 0.50 (50%) when the Probability
Distribution (horizontal axis) is 0. As expected, when the mean value is specified to be 0, there
is equal probability of any single value being higher, or lower.
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Departing from the mean, Figure 3 Figure 3

(graphical display and Excel cell
values) reveal that a cumulative
probability of

e 16% has been reached @ x=-1.0, :". ,’r\
e 31% @ x=-0.5, a5l / \
o 69% @ x=+0.5, - =
e 84% @ x=1.0, etc. -Syntax: NORMDIST(x, mean, standard_dev, cumulative)

*There are two variations of NORMDIST, according to the value assigned cumulative
There is then a 31% chance that “x” «Cumulative is a logical parameter that determines the form of the function

is at Ieast -0.5in magnitude, a 69% oIf True, it returns the cumulative distribution function.

chance that “x” is at least 0.5 in
magnitude, etc.

The NORMINV [NORMINV(Probability, Mean, Standard_Dev)] performs the inverse operation
by returning the “x” value for a given cumulative probability of normal distribution with
specified mean and standard deviation: Figure 4.

Figure 4 This calculation indicates the

*The NORMINV Cumulative probability is
[NORMINV (Probability, Mean,

Standard_Dev)] performs the inverse
operation by returning the “x” value for

& | =NORMINV((Q2,03,04)

2015 | prot ¥ g tothe |
0 Arithmetic mean of the distribution
1 Standard deviation of the distribution

e 16% when “x” attains the value

a given cumulative probability of -0.99,

normal distribution with specified

mean and standard deviation e 31% when “x” attains the value
- = - ) «Cumulative probability is 16% -0.50
2 0 Arithmatic mean of the dlstributien when *“x” attains the value -0.99

1 Standard deviation of the distribution

«Cumulative probability is 31% e 69% when “x” reaches 0.50.
when “x” attains the value -0.50

*Cumulative probability is 69%
ponding to¥he nomal when “x” attains the value 0.50

i
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3 0 rithmetic mesn of the distrit

4 1 Standard deviation of the distribution
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Sl MNorminy
[ _____o.s0 W inverse of normal cum distribution for the terms above

Monte Carlo Modeling of Sw(Archie)

With a basic understanding of what the Excel Gaussian Distributions options are, one is able to
model the Archie equation within that framework. For illustration purposes, we regard “a”, Ry,
and R; to be well-known, and @, “m” and “n” subject to uncertainty as specified in Figure 5.
Allowance for uncertainty in “a”, Ry, and Ry may be addressed by a straight-forward extension of
the techniques presented here. Also, while the focus here is on the simple Sw(Archie), any
other model (shaly sand, for example) may be evaluated in a similar manner. Once the
concepts are understood, locally specific models are readily developed.

Each of the uncertain attributes is modeled as a random number input to Norminv, whose
mean value and standard deviation are locally appropriate. For example (Exhibit 5), the first
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pass random estimate of porosity,

Figure 5

with a distribution centered on 20
pu and having a standard !

deviation of 1 pu, results in an
estimate of 21 pu. The random ———
values of “m” and “n”, : ; :

. L 10 Sample Random __Phi “m" - an EL] %‘n I,' 1
appropriate to the specified T . AT i | \
distributions, are independently W s o  om e moan om b L .
and randomly determined, and Sy, |- § o o ik ko o Random()

1

*As a quality control device, we determine and display the
distribution of random numbers, between zero and one, for the
number of Monte Carlo passes being used in a specific simulation
(2000, in this example). In a perfect world there would then be
200 observations in each of the ten bins displayed

calculated per the Archie relation. |2 @ o= o s 20 on

0 10 .59 0.1y 1.85 186 C.50]
i i 052 019 17 Les 040
2 12 018 023 am 03 032
i 13 038 o0 205 an 040
4 12 nst oas 20 186 032
£ 15 0.07 0.21 212 208 0.38

Because Excel recalculates

>

equations each time the
«Each of the uncertain attributes are modeled as a random number input to NormInv,

spreadsheet is opened,
specifications are changed, the
various results will change (your

or

whose mean value and standard deviation are locally appropriate. For example, the
first pass random estimate of porosity, with a distribution centered on 20 pu and
having a standard deviation of 1 pu, results in an estimate of 21 pu.

line item spreadsheet values will change, each time you make a modification).

As a quality control device, we determine and display the distribution of random numbers,
between zero and one, for the number of Monte Carlo passes being used in a specific
simulation (2000, in this example). In a perfect world there would be 200 observations in each
of the ten blue bins displayed in Figure 5.

Figure 6 illustrates the relation between the magnitude of Normlnv, and the distribution of
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Figure 6

*Relation between
Norminv Magnitude
and the distribution of
Norminv values

*90 samples

*The distribution of
Norminv Magnitude
is ‘normal’ per
specified ‘mean’ &
‘std”, and will
approach the
expected ‘bell shape’
as yet more
simulations are
performed

«It is the distribution
of NormInv values
that is driving the
Sw(Archie)
simulation
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Normlnv values, for different
standard deviations, at 90
simulations. Both distributions
take on an approximate Gaussian
appearance, with the larger
standard deviation result
displaying more scatter. It is the
distribution of Norminv values
that is driving the Sw(Archie)
simulation. It's important to
realize that each occurrence of
Normlinv involves an
independent Rand() input.

The approach taken here is
intended to parallel that of the
LSU results (Must Read

supplemental material), which also includes Log Normal and Triangle distributions, and so can
be directly referenced if either of those distributions are required: www.enrg.Isu.edu/pttc/.
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As an additional QC device, the statistical attributes of the simulated quantities (®, ‘m’ and ‘n’
in this example) are tabulated directly from the simulation population, and displayed
graphically: Figure 7.

With 2000 simulations, the Figure 7
. . - e . MonteCarlob ling.xls
model population nicely -Porosity is specifiedasa | g e .. .| Cross Check
replicates the input numerical Gaussian distribution, e e e
ey B WS- A (O] Mege s Conter =[S~

centered on 20 pu with a
standard deviation of 1 pu

/

specifications, and the porosity
distribution takes on the +2000 calculations are

expected appearance (Figure 7). [ done,and the result
“checked’ by means of

Simulation results are reported histograming the resulting

. porosity distribution and
both numerlca“y and calculating the resulting

graphically: Figure 8. In this statistics - Monte Carlo Distributio
articular case ereisa 6 *The simulation is observed to reproduce the a0 - Foreeh)]
particul , th isa 95% The MC simulation is observed duce th ot
. . . . ecified inputs 3%
likelihood that Sw is contained | *F*“""¢“!"™ o
eg . *Random number “mean” & “Std” converge to 20 1
within + /- 2 ¢, (0.357 — 0.076) input values foo 7
<Sw < (0.357 +0.076) =» 0.28 < o AL
SW < 0'433' Oo.oo 005 0.10 015 020 0.25 030

Porosity

In utilizing Excel frequency distribution graphics, one should take note of how the ‘bins’ are
populated, as they are not

Figure 8 .
) ATt W ‘centered’. This can cause the
*One issue of interest is the o . .
dependence of Sw upon = IEU.ncert_efl.nty’ graphic to take on a shifted
individual attribute values |~ “ S appearance, with respect to the
/ uncertainties S —

v —- numerical report (consult Excel

M‘—u Help on the Frequency function for
om0 oo details).

Mean  S1d_Dev  Measn  S1d_Dev
2008 00978 2000 0.102%

*With the specifications at
right

* Sw(mean) = 0.357

. = Dettasw  oas1 . . .
o48w) = 0038 The Sw(Archie) result population is
_ o —— . Monte Carlo Distributon further affected by the nonlinear
*There isa 95% likelihood that Sw is contained 600
within +/-2 ¢ r'\"'s“" relation between the various
*(0357-0.076) < Sw < (0357 + 0.076) : TVRY attributes, as discussed by Bryant

+0.28< Sw < 0.433 Lo %L . . .
—_— et al in Understanding Uncertainty,
*Be aware of how Excel *bins’ data | . .
aw oo o o oo o] Oilfield Review. Autumn 2002, who

illustrates that @ normal

uncertainty distribution about a given porosity yields a log-normal distribution for the
resulting Sw distribution. Bryant’s article is another Must Read.
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In Search of The Biggest Bang For The Buck

Figure 9
¢+ /-1 o will encompass ~ 68% of the distribution
¢ +/- 2 6 ~ 95 % of the distribution,

«Approximate the “Phi” relative uncertainty of 15%
@10pu(1.5pu)yas2c~1.5pu=>0c~0.75pu for
Monte Carlo Simulation purposes

Attribute Uncertainties Specified Individually
Light Green Cells require User Specification
Light Blue Cells are calculated results

Individual Best Relative Uncertainty
Attribute Uncertaint Estimate  On Sw(Archie)
a 0.0% 100 | 0.0000
Rw 0.0% 002 0.0000
Phi 15.0% 010
10.0%  2.00
5.0% 2.00
0.0%  40.00

22%

0.0224

Rt 0.0000
Sy

0.0900
0.2121@

*That is, 2 oencompasses 95 % of the spread in the distribution, and it is set equal to

the 15 % uncertainty of the Chen & Fang analyses

«Approximate the “m” relative uncertainty of 10% @ 2.00 (0.2)as2 ¢ ~0.2=> o~

0.1 for Monte Carlo Simulation purposes

*Approximate the “n” relative uncertainty of 5% @ 2.00 (0.1)as2 ¢ ~ 0.1 => o~

0.05 for Monte Carlo Simulation purposes

*The Biggest Bang For The Buck is to be found in “m” as it has the greatest

uncertainty relative to the other attributes

The Biggest Bang for the Buck
Derivatives vs Monte Carlo

After C. Chen & J. H. Fang. Sensitivity Analysis
of the Parameters in Archie‘s Water Saturation
Equation. The Log Analyst. Sept — Oct 1986

We are typically confronted with
two issues, first to characterize the
uncertainty in the Sw estimate
itself, and next to identify where
time and money would be best
spent to reduce that uncertainty.
There are two ways to proceed: 1)
take the derivative of Archie’s
equation with respect to each
term, and compare the magnitude
of each term against one another,
for specific attribute values. 2)
Monte Carlo simulation, with the
input attribute distributions
specified per locally representative
requirements.

The differential approach was illustrated in an earlier article, Risky Business, and those results
have been included in the following so as to both ‘make the connection’ and to also serve as a
cross-check. The illustrative attribute values / uncertainties are those in the Chen & Fang (1986)
paper, so as to allow reference to that material as well.

In the case of Figure 9 attributes, the differential approach would indicate that time / money
would be best spent on “m”, as the relative uncertainty of the cementation exponent is far
greater than any of the other attributes.

The connection between
derivatives and Monte Carlo is
made by recognizing that two
standard deviations
encompasses 95% of the
statistical scatter, and then
setting, attribute by attribute,
2: equal to the Chen & Fang
illustrative uncertainties,

simulation (below)

Figure 10

*Chen & Fang identify the attribute resulting in the
greatest Sw uncertainty

«In the case at right, “m” is the dominant issue

*This same issue can be addressed with Monte Carlo

Attribute Uncertainties Specified Individually

Light Green Cells require User Specification

Light Blue Cells are calculated results

Individual Best Relative Uncertainty
Attribute Uncertaint Estimate  On Sw(Archie)

a 0.0% 1.00 0.0000

Rw 0.0% 0.02 0.0000

Phi 150% 010  0.0900
m 6 100% 200 0,21216
00224

5.0% 2.00
0.0000

n
Rt 0.0% 40.00

Derivatives vs Monte Carlo

Sw 22%

\

*The Base Case is at lower left, with each simulation towards the right reflecting an
improvement in “Phi”, “m” and “n” individual precision by

%, respectively.

\‘>

thereby forming the Base Case
for Monte Carlo: Figure 9.

Monte Carlo simulations are
then performed, incrementally,
with each attribute better
defined by 10% and the
improvement (reduced scatter)
in the resulting Sw noted: Figure 10.
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Monte Carlo simulation reveals that a 10% improvement in definition of the cementation
exponent will yield the greatest reduction in Sw uncertainty, relative to the other attributes,
and consistent (as expected) with Chen and Fang (Figure 9).

Figure 11
Auribute  Mean Sl «One also observes that the Best / Worst numerical
Rw 002 evaluation of Sw(Archie) is considerably more
Rt 40 pessimistic than is the +/- 2 o Monte Carlo
Phi 0.1 0.0075 - lat-on
—y 2 g simulati
" 2 0.0500 *The Best and Worst of all parameters are
| oswo 02 unlikely to occur simultaneously
o Monte Carlo Statistics
Monte Carlo Distribution Cross-check Specs
700
" p—— Porosity
600 /\. Mean  Std_Dev
5. 500 / \ 0.100 0.0076
E 400 nmn n"n
:.‘ 300 \ Mean  Std_Dev  Mean  Std_Dev
& \ 1.997 0.1005 2.001 0.0508
200 /
100
o J High-Low Numerical Statistics
0.00 0.10 0.20 0.30 0.40 0.50 i 0222 03 m
Sw
0.142 0.171
Best Case m e
Worst Case sw 0.224

The uncertainty in an Sw

estimate is a dynamic
issue, dependent upon

the relative magnitudes

of the input attributes
which are themselves
linked, and thus may
change through the
reservoir.
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We also note that the Best /
Worst case scenario would
significantly over-state the
95% Monte Carlo uncertainty,
because it’s unlikely (though
not impossible) that the Best
or Worst, of all attributes,
would occur simultaneously:
Figure 11.

Were porosity to be 25 pu,
rather than the 10 pu of the
above example, the focus
changes. Now attention is
best devoted to the “n”
exponent: Figure 12.

the Biggest Bang For The Buck.

Figure 12
«If porosity were to be 25 pu, rather than 10, the focus changes
*“m” and “n” uncertainties have been set equal in this simulation
*The Base Case is at lower left, with each simulation towards the right reflecting an
improvement in “Phi”, “m” and “n” precision by 10 %.
*With the improved porosity, focus shifts to “n”, the tortuosity of the conductive
(brine) phase in the presence of a non-conductive (hydrocarbon) phase, as offering

*Improved “n” definition yields the greatest reduction in the standard deviation

of Sw
Attribute  Mean std Attribute  Mean std

1t 1 ngn 3

Rw 0.02 |
Rt 40 - 40

Phi 025  0.0100 Phi 5 0.0090

"m" 0.1000”"} m" 2 0.1000

0.1000 7}
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Uncertainty Specification

Uncertainty arises from multiple sources, and includes (among others) the following.
e (Calibration data (routine grain density & porosity, special core analyses for “m” & “n”,

etc)

e The down hole instruments which are making the actual measurements

e The assumed interpretive model

Figure 13. Core Analyses Uncertainty

*The samples are assumed to not change

Thomas (1989), of
Amoco, performed
a detailed study of

. ’ Experi \ Statisticall

between tests, so that differences reflect Measurement Based derived: the accuracy and
random variations in the measurement Porosity +0.5Por% | £0.23% e
process Grain density “001gec | +0.0093gcc | reProducibility of

L . . Air permeability repeated routine
Deviations are interpreted as Gaussian in 0.01-0.1md | +30% £21%
nature, so that 0.1-1.0mdf| +25% +21% core analyses, and

10-50md | +15% +13% ;

*+/- 1 o encompasses 68% of the data, 50 md-1 darcy{  +15% +8% provided the

»+/- 2 o encompasses 95 % of the data

eTabulated confidence limits reflect the 99% limits

A single measurement made on the same sample, which falls outside the specified

99% level is likely to be in error

The Log Analyst 30, No 2, March — April 1989

A Statistical analysis of the Accuracy and Reproducibility of Standard Core Analysis. David C Thomas and Virgil J Pugh

resulting 99%
confidence limit:
Figure 13. In
practice, the issue
is broader than just
the individual core
measurements, and

also includes compaction adjustments to the core, volumetric differences between the core and

log measurements, etc.

In addition to the core

calibration data, there is also

uncertainty in the borehole
wireline / LWD
measurements: Figure 14.

In practice, particularly in a
field when there is legacy
data present, these
specifications will change
with time and tool type. The
6FF40 induction tool, for
example, had a skin effect
issue below about 1 ohm-m
and a signal-to-noise limit
above ~ 100 ohm-m. Newer
tools will have different
limitations.

WWW.GeoNeurale.Com

Figure 14. Wireline Tool Uncertainty

SERVICE NAME TOOL MEASUREMENT ERRORS
Dipole Shear Sonic Imager (DSI) | DSST-A P&S Compressional DT: 2%
P&S Shear DT: 3%
Dipole Shear DT 5%
Stoneley DT: 3%
Compensated Neutron (CNL) HGNS or 0-20pu +1pu
CNL 30 pu +2pu
»45pu  +6 pu
Litho-Density LTD-D RHOB: 16 -30 g/em3 + 0.01 gfem3
1-1.6 gfem3 +0.02 gicm3
PEF: 1.4 -B.0 barnefe +B%
Maximum Logging Speed 1800 fph
Integrated Porosity Lithology IPLT
Tool
Accelerator Porosity Sonde APS <7pu +-5pu
7=30pu H-T%
30 - 60 pu +-10%
Litho-Density Sonde LDS RHOB: 20-3.0 gfec 4~ .01 gfec
PEF: 1-6  +-10%
Platform Express
Compensated Neutron (CHL) PEX-CNL 0-20pu +1pu
30pu +2pu
»45pu +6 pu
Three-detector Litho-Density from | PEX-TLD RHOB:; 0.01gfcm3 (no mudcake)
Platform Express PEF : 0.15 bamefe (no mudcake)

Courtesy Tim Pritchard, BG Group
Ilustrative Values. Consult your Service Company for locally specific attributes.
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The Archie exponents present an additional set of issues. Focke and Munn (1987) nicely
illustrate the dependence of ‘m’ upon carbonate pore geometry, while ‘n’ is controlled by
wettability (Sweeny & Jennings, 1960) and surface roughness (Diederix, 1982). In carbonates,
wettability (and hence “n”) may vary with pore size (Chardac et al, 1997), and pose an
additional challenge, particularly in the transition zone.

Adams (2005) cautions (and illustrates) that quantitative uncertainty definition is more than
just using Monte Carlo simulation to vary the inputs to the interpretation model. The largest
source of uncertainty may be the interpretation model itself.

Griffiths (2006) brings our attention to the challenges posed by carbonate dual porosity
systems and potential electrical ‘short circuits’.

Carlos Torres-Verdin observes “my experience shows that the biasing of apparent resistivity
curves due to post-processing (eg deconvolution) can be more detrimental to uncertainty than
Archie’s parameters, with a conspicuous example being thin, hydrocarbon saturated intervals
experiencing vertical resolution and invasion effects.

Voss (1998) comments on determination of uncertainty ranges as does Bowers (2003).
Summary points include

* Asingle interpreter should avoid making estimates on their own.
* Asingle interpreter often lacks the needed knowledge to correctly estimate
every parameter.
* |In addition, many interpreters have a bias that smaller errors are better and they
will appear more knowledgeable about the subject.
e The error must reflect the level of knowledge about the parameters and the data
quality.
e A standard set of uncertainty ranges must be avoided because there is no standard
situation in which to apply them.
e Unusual events also pose special problems.
* Most people have a better recall of unusual events
* Therefore a tendency to overestimate the probability of such an event
e Especially if that event occurred recently
e Another very common mistake is to allow a very small amount of data to quantify the
range of uncertainty
e If data sets are small, the ranges probably need to be increased.
* Boundary Conditions
* Water saturation must lie between zero and one
* |If the saturation values are too large or too small, the "best guesses” and ranges
must be reconsidered and calculations remade.
The final and probably most difficult problem to overcome is the culture and
preconceived ideas of an organization.
Methods and ranges of uncertainty applied to any analysis must be questioned every time
they are applied.
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These considerations (and others, included in the References) are not meant to be over-
whelming, but rather simply realistic. Each case may very well be different, and must be
addressed on an individual basis.

Summary

There are two basic ways in which the issue of uncertainty can be characterized; partial
derivatives of the expression of interest (Sw in this situation) and Monte Carlo simulation. At
the simplest level, they complement one another, and since each are easily coded into an Excel
spreadsheet, we routinely perform both, as a QC cross-check.

The deterministic derivative approach yields an equation, which may be easily coded into foot-
by-foot petrophysical analyses, in those cases for which the commercial petrophysics s/w does
not include an uncertainty characterization option. One is then able to ‘bound’ the calculated
results, foot-by-foot, which is an improvement over a ‘generic envelope’, given the inter-
dependence of the result and specific reservoir values. An illustration of this method may be
found in Ballay, Risky Business, March 2005, www.GeoNeurale.com

On the other hand, an attribute specific distribution may not be Gaussian. Focke and Munn,
for example, investigated the dependence of the cementation exponent upon pore geometry.
Suppose across a given interval we are unable to distinguish between interparticle and vuggy
porosity; either is a possibility. The associated “m” distribution could then be rectangular, not
Gaussian, an issue that the Monte Carlo approach can easily address (each input attribute can
have its specific distribution, independent of the others).

In any case, it's important to recognize the following.

e The uncertainty in Sw(Archie), and other common oilfield calculations, can be
qguantitatively addressed by both differential and statistical modeling approaches.

e Excel can handle common probability distributions, and can then serve as the Monte
Carlo simulator. The derivative method will yield equations which may be easily coded
into Excel, thereby facilitating a cross-check.

e Quantitative estimation of the uncertainty allows one to determine where time / money
is most effectively spent, and to further avoid the trap of being misled as a result of a
previous bad experience with a poorly defined parameter

e The importance of the various input parameters will change, according to the various
magnitudes. There may be a linkage in that one parameter becomes more or less
important as another parameter value is change. One size does not fit all feet.

e The equations resulting from the derivative approach may be coded, foot-by-foot, into
the petrophysics s/w package, thereby providing a live-linked uncertainty estimate to
the actual, local reservoir properties.
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