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MACHINE LEARNING ALGORITHMS APPLICATIONS IN SEISMIC AND PETROPHYSICAL ANALYSIS 
 
Part 1  -                                        LINEAR HYPOTHESES 
 
 
Applications of machine learning algorithms are increasingly used in seismic and petrophysical 
interpretation both for analog prediction and for classification.  
In “supervised mode”, a training set of input variables (parametrized by some features) and target 
values is used to model / train a hypothesis function useful to predict future target values.  
Each time that we are confronted with an optimization problem we have to go through 3 main 
phases: 
 
1. Definition of a hypothesis function for the best approximation of the training set 
2. Calculation of a cost/objective function (error between the regression approximation and the 
training set) as difference between each element of the training set ordinate and the corresponding 
hypothesis ordinate (at same abscissa of the considered element).  
This corresponds to half of the sum of square errors normalized for the number of samples in the 
training set. 
3. Calculation of the gradient descent of the objective function to define the parameters that will 
minimize this  function. 
 
If the hypothesis of a linear regression  is optimized to forecast an unknowns which belong to the 
class of the training set with maximum probability we still can have  problems in forecasting events 
which are not strictly linear.  
In this case higher order polynomials have to be used to better approximate the optimal hypothesis.  
However linear regression is well used in many problems that describe clear linear relationships 
between parameters. This could refer to many examples like Archie properties forecast in clean 
sands or pure intercrystalline porosity in carbonate for petrophysics and seismic inversion for flat 
simple tectonic and stable elastic formation properties. 
One log can be predicted from three or more different logs through linear or non-linear regression. 
 With multiattributes analysis we can forecast the distribution of petrophysical properties in the 
seismic volume through seismic attributes.   
In new applications  like PreSDM, tomographic inversion, FWI and velocity analysis (SO-CIG), 
multivariate regression is often used to flatten the CIG or minimize the difference between the 
model and other seismic or petrophysical constraints. 
 
 
 
 



To adapt the nomenclature and notation from machine learning theory to geophysical theory the 
name “training set element” will be translated into “input attribute” for geophysical applications. 
 
The theory of machine learning applications starts from simple linear regression, where the equation 

of a line is described by its equation.  Here  x will be an input attribute, M (angular coefficient) and q 

(intercept). M and q  are the parameters and y is the target attribute  (Eq. 1). 
 
1.          y = M x + q 
 
These terms in machine learning are described with different notations to underline that this line is 

introduced as a hypothesis which is a function of a training set attributes x(i)
 of m+1 elements  with  

0 <i < m  and that the intercept y and  inclination of this line is a function (parametrized) by 

coefficients  j. Parametrized means that coefficients  j  have the power to progressively change 
the position of the line during the progress of the optimization process until a final position is  
reached where this line will be able to forecast future target attributes with the minimum error.  
 
In machine learning notation the regression line equation is written as: 
 

2.         h  (x) = xo o + x1 1                      ( where xo =1 )  
               LIN 

 
This equation is called “linear hypothesis” used to model and approximate or forecast the  

process described by the training set x1 composed by m elements: 

“linear hypothesis of the line described by the training set  x(i)
  and  parametrized by  

parameters  o and 1 ”.  In this notation of  x ,  
(i)

  is not an exponent but the index 

of the elements of vector X describing the input attributes.  

 

 

MULTIVARIATE REGRESSION  
 
Input variables that belong to one single class of attributes can be also called  “feature”.  
Suppose we wanted to predict porosity from resistivity. In this case resistivity is the feature and 
porosity the target. Another example could be predicting reflected wave amplitude from elastic 
impedance, then elastic impedance is the single feature and amplitude the target property.  
As we know these examples are not realistic, we need more that one feature to predict seismic and 
petrophysical target attributes. We need to extrapolate the regression operators from the2 to the 3 
to the n-dimensional space.  For n features the extrapolated form of the linear regression. is  eq. 3 . 
 
 

3.          h  (x) = xo o + x1 1 + …+ xn n                      (xo =1)  
                LIN

 

The general equation can be written in vectorial form: 
 

  4.         h  (x)  =   T
 X 

 

In multivariate regression  X is a vector of  dimension R
m+1

  and    is a vector of dimension R
n+1

 . 
m being the number of of input attributes for each attribute class of the training set (feature) and n 
the number of features. 



The standard notation for each sample of the training set is: 
 

 5.     x (i) j 
 
Multiple features means that we have several input attributes available as data for the training set. 
If we could have for the rough calculation of Sw a set of 4 measurement type or 4 features 
Rw,Rxo,Rmf,Rt, one measurement every 1ft , then we would have for 1000 ft , m=1000 samples of 

each feature. For vectorization we have to add Xo therefore the vector dimension for each feature is  

1001    0<i<1000. The number of feature would be also  n = 4+1  (0<j<4),  (consider Xo   and  o  ). 

Consider another example. 
Suppose that  for the distribution of Porosity Phi as target attribute on the 3D seismic cube we have 
the following input attributes:  Vp, amplitude envelope, instantaneous phase, average frequency, 
acoustic impedance. 
Suppose that we have to analyze a formation of surface 1000x1000m and the bin dimension is 
25x25m. 
Then  n = 5+1 , m = (1600+1) x fold.  By neglecting the fold in case seismic attributes are averaged bin 
by bin then m= 1600+1. 

Thus:  xo =1,  o =intercept ,   0<i<m ,   0<j<n  . 

 

               

 
 
 
OPTIMIZATION PROCESS 
 

As previously discussed, the main problem is solving for    and this will permit to write the best fit 
equation for the hypothesis.  
For multivariate linear regression geophysical purposes two main approaches are used:  
-Objective function minimization. 
-Normal equation linear algebra solution. 
 
Objective function minimization is the operator which allow solution where larger number of 
parameters are present and will be the subject of the following discussion. 
 
As mentioned before, the optimization process of solving for the best regression line which  
forecasts  the optimal results for a specific process is reached with two steps: 
 
 
1. Calculation of an “Objective” or “Cost Function”  
2. Search of the minimum value of the objective function which expresses the minimum difference 
    between training set and hypothesis.   
 
 There are many optimization methods for searching the minimum.  Here we will consider the 
gradient descent. 
 
 
 
 
 
 
 



 
 

The Obiective function  J( ) quantifies  the difference between the training set and the hypothesis. 

 
 
6. 
 
 
                        1                  m                                               2 

J( )   =                            [ h  ( x (i) ) -  y (i) ] 

                      2 m               i=1 

      
  
 

This is a surface on the 3D space   o  ,  1  ,  J( )   , 

However this is a hypersurface in the n dimensional space   o  , .. ,  n  , J( )   with  ( 0 <j < n). 

 
The gradient descent method is applied to find a local minimum in the objective function. 
This can be a variable issue, as there can be many local minima and the final result can 

depend from my starting point  o , .. ,  n  where I start searching the minimum. 

Physical methods related to a specific process have to be applied to reach appropriate 
absolute minima.  
 
In FWI this gradient descent method is integrated by reverse time migration of residuals  
which is analogue to the back propagation procedure of errors in Neural Networks (NN). 
 
The operator for the gradient descent is implemented by contemporary update of   
directional derivatives of the objective function. 
The gradient is by definition the maximal directional derivative and the gradient here 
is the vector sum of the directional derivatives along each component of the features 

 o  to n . 

 
 

By applying the partial derivative of  the function   J( )    we obtain eq. 7:   

 
    
7. 
 
 

        d                                               1                  m                                               

                   J( )        =                                 [ h  ( x (i) ) -  y (i) ]  x (i)j 
                                                          m               i=1 

       d j 

 
 
 
 



 
 

Updating  j   new   with gradient descent means  find new points in the hypersurface with abscissae 

o  to n  with decreasing values of  J( ). 

 

The partial derivatives have to be multiplied by a factor   called “learn rate” and this factor 

must be subtracted from the previous value for j  . 

 

The choice of  is critical for the convergence of the minimization process. There are minimization 

procedures where     is automatically updated.  However as the partial derivative decreases 

constantly and tend to zero through the minima also the product for proper choice of   will tend  
to zero. 
 

By software implementation care must be taken that new j  components must be simultaneously 

updated with the assignment operator (:=). 
 
The update is performed through programming loops  eq. 8 : 
 
 
 
8. 
 
 
                                                                        1                m                                               

    j NEW    : =   j OLD   -                                           [ h  ( x (i) ) -  y (i) ]  x (i)j 
                                                                             m               i=1 
                          
 
 
 
 
There are cases where a proper choice of input attributes are not modeled through linear 
hypotheses. In this case we still can use the operator of the regression process but introduce 

a polynomial regression setting  x1, x2, x3, …, xm equal to exponential factors. 

The regression line can be modeled by positioning of  x1  = X , x2  =X
2
 ,  x3 =X

3
,  xm =X

m
 . 

This algorithm is basic for many applications in machine learning and also development platform 
for non-linear operators, logistic regression and NN. 
 

Fig 1. shows a 3D objective function J( ) , as function of the parameters  o  and  1 

with the directions through the optimal minimum calculated from gradient descent algorithmus 
which depends from the starting point.  A slightly change of the starting point can lead to different 
local minima. This is why the dynamical parameters of the physical system has to be integrated on 
the gradient descent calculation to reach the absolute minimum. 
 
 
 
 
 



 
 
 
 
 

 
 
Fig. 1 
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