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ABSTRACT
Most 3D geological modelling tools were designed for the needs of the
oil industry and are not suited to the variety of situations encountered in
other application domains. Moreover, the usual modelling tools are not
able to quantify the uncertainty of the geometric models generated. The
potential-field method was designed to build 3D geological models from
data available in geology and mineral exploration, namely the geological
map and a DTM, structural data, borehole data and interpretations of the
geologist. This method considers a geological interface as a particular
isosurface of a scalar field defined in the 3D space, called a potential
field. The interpolation of that field, based on universal cokriging,
provides surfaces that honour all the data.

Due to the difficulty of inferring the covariance of the potential field,
the first implementation of the method used an a priori covariance given
by the user. New developments allow this covariance to be identified
from the structural data. This makes it possible to associate sensible
cokriging standard deviations to the potential-field estimates and to
express the uncertainty of the geometric model.

Practical implementation issues for producing 3D geological models
are presented: how to handle faults, how to honour borehole ends, how to
take relationships between several interfaces into account, how to
integrate gravimetric and magnetic data.

An application to the geological modelling of the Broken Hill district,
Australia, is briefly presented.

INTRODUCTION

The resource evaluation of a mining deposit is often decomposed
in two steps:

1. delimitation of the boundaries of the units corresponding to
the various geological formations or ore types; and

2. estimation of grades within each unit.

In simple cases (eg a series of subhorizontal layers), the
geometric model can be built using 2D geostatistical techniques
(kriging or cokriging of the elevations or thicknesses of the
various horizons), which also quantify the uncertainty of the
model. A lot of effort has been undertaken to develop 3D
modelling tools capable of handling more complex situations
(eg Mallet, 2003). Most of them were designed to fulfil the needs
of the oil industry, namely for situations where a draft of the
underground model can be defined from seismic data.
Deterministic methods are also available to interpolate between
subparallel interpreted cross-sections.

When assessing resources, the knowledge of the degree of
uncertainty of the estimation is as important as the estimate
itself. The uncertainty on the boundaries and volumes of the
various units is often a major part of the global uncertainty.
When 2D geostatistical techniques can be used, the
quantification of that uncertainty by an estimation variance is a
valuable by-product of the estimation process. By contrast usual
3D modelling tools are not able to quantify the uncertainty
attached to the interpolated model, whereas that uncertainty can
be quite large.

The potential-field method was designed to build 3D
geological models from data available in geology and mining
exploration, namely:

1. a geological map and a digital terrain model (DTM),

2. structural data related to the geological interfaces,

3. borehole data, and

4. interpretations from the geologist.

It is not limited to sedimentary deposits and does not require
seismic data (such data would be useful but is seldom available
in geological, mining and civil engineering applications). It can
be linked to inverse methos to take gravimetric and/or magnetic
data into account.

The potential-field method defines a geological interface as an
implicit surface, namely a particular isosurface of a scalar field
defined in the 3D space – the potential field. The 3D
interpolation of that potential field, based on universal cokriging,
provides isosurfaces that honour all the data. Since no data
measures the potential field itself, its covariance cannot be
inferred directly, so that the method was used with a covariance
chosen by the user, thus making the method a conventional one,
among others. Recent developments allow that covariance to be
determined from the structural data, which makes it possible to
associate sensible cokriging standard deviations to potential-field
estimates and to translate them into uncertainties on the 3D
model.

We will first recall the basic principle of the method, present
the inference of the potential-field covariance from the structural
data and explain how the uncertainty of the 3D model can be
quantified. We will then examine several practical issues: how to
handle faults, how to honour borehole ends, how to take
relationships between several interfaces into account, how to link
3D geometrical modelling and inverse modelling of gravimetric
and magnetic data. We will end with a brief presentation of an
application to the geological modelling of the Broken Hill
district, Australia, and a short discussion.

BASIC PRINCIPLE OF THE POTENTIAL-FIELD
METHOD

The basic method – which will be generalised in the sequel – is
designed to model a geological interface or a series of
subparallel interfaces Ik, k = 1, 2, … (Lajaunie, Courrioux and
Manuel, 1997). Its principle is to summarise the geology by a
potential field, namely a scalar function T(x) of any point
x = (x, y, z) in 3D space, designed so that the interface Ik
corresponds to an isopotential surface, ie the set of points x that
satisfies T(x) = tk for some unknown value tk of the potential
field. Equivalently, the geological formation encompassed
between two successive interfaces Ik and Ik’ is defined by all the
points x whose potential-field value lies in the interval defined by
tk and tk'. In figurative terms, in the case of sedimentary deposits,
T could be seen as the time of deposition of the grain located at
x, or at least as a monotonous function of that geological time,
and an interface as an isochron surface. This figurative
interpretation can be adequate in some applications but is not
necessary for the development of the method.
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Data types

T(x) is modelled with two kinds of data, as shown in Figure 1:

1. points known to belong to the interfaces I1, I2, …, typically
3D points discretising geological contours on the
geological map and intersections of boreholes with these
interfaces; and

2. structural data: in the case of sedimentary rocks whose
stratification is parallel to the geological horizons, this data
is polarised unit vectors normal to the stratification;
similarly they can be unit vectors orthogonal to foliation
planes for metamorphic rocks; this data is measured on
outcrops or in boreholes, either on the interfaces or
anywhere within a formation.

For the interpolation of the potential field, this data is coded as
follows:

1. Since the potential value at m + 1 points x0, x1, …, xn
sampled on the same interface is not known, this data is
taken as m increments T(xα) – T(x’α), α = 1, …, m, all
valued to 0. Two classical choices for x’α consist in taking
either the point x0 whatever α, or the point xα–1 (the choice
has no impact on the result; other choices are possible
provided that the increments are linearly independent).
Since the sampled data can be located on several interfaces,
let M represent the total number of increments (it is equal
to the total number of data points on the interfaces, minus
the number of interfaces).

2. The polarised unit vector normal to each structural plane is
considered as the gradient of the potential field, or
equivalently as a set of three partial derivatives ∂T(x) / ∂u,
∂T(x) / ∂v, ∂T(x) / ∂w at some point xβ. The coordinates u,
v, w are defined in an orthonormal system; this system can
be the same for all the points or a specific system can be
attached to each point (the result does not depend on the

choice provided that the three partial derivatives are taken
in consideration). In the sequel let ∂T(xβ) / ∂uβ denote any
partial derivative at xβ and N denote the total number of
such data (in practice N is a multiple of three and the xβ
form triplets of common points). Let us recall that the xβ do
not necessarily coincide with the xα (the latter are located
on the interfaces whereas the former can be located
anywhere).

Interpolation of the potential field

The potential field is then only known by discrete or
infinitesimal increments. It is thus defined up to an arbitrary
constant. So an arbitrary origin x0 is fixed and at any point x the
potential increment T(x) – T(x0) is kriged. The estimator is in fact
a cokriging of the form:
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where the weights µα and νβ, solution of the cokriging system,
are in fact functions of x (and x0). One may wonder why the
potential increments are introduced in that estimator since their
contribution is nil. Because, and this is key, the weights νβ are
different from weights based on the gradient data alone.
Conversely, the gradient data also play a key role, because in
their absence the estimator would be zero whatever x may be.

Cokriging is performed in the framework of a random function
model. T(.) is assumed to be a random function with a
polynomial drift:
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and a stationary covariance K(h). Since the vertical usually plays
a special role, the degree of the polynomial drift can be higher
vertically than horizontally and the covariance can be
anisotropic. For example, if we model several subparallel and
subhorizontal interfaces, it makes sense to assume a vertical
linear drift of the form m(x) = b0 + b1 z, ie with two basic drift
functions f 0(x) ≡ 1 and f 1(x) = z. A geological body with the
shape of an ellipsoid would correspond to a quadratic drift, ie to
the ten basic monomial drift functions with degree less than or
equal to two. Note, however, that the drift function f 0(x) ≡ 1 shall
be forgotten in any case since the potential increments as well as
the partial derivatives filter b0. In theory, sinusoidal terms could
be added too (Dimitrakopoulos and Luo, 1997), but in usual
applications geology is not regular enough for that.

Once the basic functions f �( )x of the drift and the covariance
K(h) of T(.) are known, we have all the ingredients to perform a
cokriging in the presence of gradient data, as shown in Chilès
and Delfiner (1999, section 5.5.2). Indeed, the drift of ∂T(x) / ∂u
is simply ∂m(x) / ∂u, ie a linear combination of the partial
derivatives ∂f �( )x / ∂u with the same unknown coefficients b

�
as

for m(x), the covariances of partial derivatives are second-order
partial derivatives of K(.), and the cross-covariances of the
potential field and partial derivatives are partial derivatives of
K(.).

Implementation of the cokriging algorithm

Since the potential increment data in fact do not contribute to the
final cokriging estimate, the estimator can be seen as an
integration of the gradient data. To preserve the spatial continuity
of the cokriging estimates it is wise to work in unique
neighbourhood, namely to effectively include all the data in the
cokriging of T(x), whatever x may be. If we are not interested in
the cokriging variance, cokriging can be implemented in its dual
form, which has two advantages:

1. the cokriging system is solved once for all, which saves
computing time; and
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FIG 1 - Principle of the potential-field method. Top: surface data –
points at interfaces and structural data; bottom: vertical

cross-section through the 3D model (Courrioux et al, 1998).



2. that form is especially suited when cokriging is considered
as an interpolator, because it allows an easy estimation of
T(x) – T(x0) at any new point x.

The latter property is very useful to display 3D views of the
geological model with an algorithm such as the marching cube,
which starts from the estimation of T(x) – T(x0) at the nodes of a
coarse regular grid and then requires intermediate points to be
predicted to track the desired isopotential surface.

INFERENCE OF THE COVARIANCE OF THE
POTENTIAL FIELD

In usual geostatistical applications, the covariance or variogram
of the variable under study is modelled from the sample
variogram of the data. In the present case, we have no
measurement of the potential T(x), and the potential increments
used for the interpolation cannot be used for the inference of K
since they all have a zero value. In its first implementation, the
algorithm was used heuristically with a covariance model
arbitrarily chosen by the user. That choice had been more or less
rationalised according to the following considerations:

1. At the scale considered, geological interfaces are smooth
rather than fractal surfaces, which implies that the
covariance is twice differentiable. A cubic model was
considered as a good compromise among the various
possible models, because it just has the necessary regularity
at the origin and has a scale parameter that can
accommodate various situations.

2. The scale parameter a and sill C of the covariance K(h)
determine the sill of the variogram of the partial
derivatives: it is equal to 14 C / a2 in the case of an isotropic
cubic covariance considered here. When there is no drift
and the geological body is isotropic (eg a granitic
intrusion), the unit gradient vector can have any direction
so that its variance is equal to one. The variance of each
partial derivative is then equal to one third. A consistent
choice for C once the scale parameter a has been chosen is
thus C = a2 / 42. That value shall be considered as an upper
bound for C when the potential field has a drift, because in
that case the mean of the potential gradient is not equal to
zero so that its variance is shorter than one (its quadratic
mean is zero by definition).

3. Sensible measurement variances can also be defined
(nugget effects).

The use of a heuristic model, however, implies two limitations:

1. the choice is usually not the best one; and

2. more importantly, this precludes any evaluation of the
magnitude of the interpolation error. A means to infer the
covariance is thus a core issue of that approach.

Since K cannot be inferred from the potential increments, its
inference shall be done with the gradient data. This is possible
because the covariances of the partial derivatives derive from that
of the potential field. In the case of an isotropic covariance K(h),
which for simplicity will be denoted K(r) as a function of
r = ||h||, the covariance of, say, ∂T(x) / ∂u and ∂T(x+h)/∂u is
–K"(||h||) when h is parallel to the u axis, –K (||h||) / ||h|| when h
is orthogonal to the u axis.

The assumption of an isotropic covariance model is of course
too restrictive and shall be relaxed. In practice the covariance
K(h) is supposed to be the sum of several cubic components
Kp(h), each one possibly displaying a zonal or geometric
anisotropy. To avoid a too great complexity, the main anisotropy
axes u, v, w, are supposed to be common to all the components.
More general formulae than the above ones are available for that
model.

Thanks to these formulae the covariance parameters of K
(nugget effect, scale parameter of each covariance component in
the three main directions, sill of each component) are chosen so
as to lead to a satisfactory global fit of the directional sample
variograms of the three components of the gradient. An
automatic fitting procedure based on the Levenberg-Marquardt
method has been developed to facilitate that task (Aug, 2004).

Figure 2 shows an example of such a fitting. 1485 structural
data was sampled in an area of about 70 × 70 km2 in the
Limousin (Massif Central, France). The main (u, v, w)
coordinates here coincide with the geographical (x, y, z)
coordinates. Since the structural data is all located on the
topographic surface, the variograms have been computed in the
horizontal plane only. Note that the sill of the variogram of the
vertical component is much lower than that of the horizontal
components. This is due to the fact that the layers are
subhorizontal so that the vertical component of the gradient
displays limited variations around its non-zero mean. The model
K includes three components, the second of which only depends
on the horizontal component of h and the third one on the N-S
component (zonal anisotropies).

UNCERTAINTY OF THE 3D MODEL

Case studies have shown that the use of a sound covariance
model improves the model in comparison with the use of a
conventional model. An additional interest of using a covariance
fitted from the data is the possibility to obtain sensible cokriging
standard deviations. Indeed, when the covariance model is
a priori chosen by the user, cokriging is a conventional
interpolator, among others, which cannot claim for optimality,
and the cokriging variance is a mere configuration index.

When the ‘true’ covariance of the potential field is known, a
meaningful cokriging standard deviation σCK(x) can be
associated with the cokriging of T(x) – T(x0). The calculation of
that standard deviation requires the use of the standard form of
the cokriging system, which calls for more computing time than
its dual form (this is the price to pay for knowing the uncertainty
attached to the geological model). Let us suppose that some
geological formation is defined by the set of points x such that
T(x) – T(x0) is comprised between two values t and t′. Under the
assumption that the potential field is a Gaussian random function
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FIG 2 - Example of fitting of the covariance of the potential field
from the sample variograms of the partial derivatives of the

potential field. Limousin dataset, Massif Central, France. γX// and
γX ⊥ denote the variogram of the partial derivative ∂T/∂x

respectively along and orthogonal to direction x (Aug, 2004).



– an assumption that seems reasonable in the present context –
the probability that a given point x belongs to that formation is:
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where:

G is the standard normal cumulative distribution function

Similarly, if we are interested in the interface passing by the
point x0, namely in the set of points x such that T(x) – T(x0) = 0,
the variable R(x) = [T*(x) – T*(x0)]/ σCK measures the likelihood
that x belongs to the interface. Indeed, writing the obvious
relation:

T(x) – T(x0) = T*(x) – T*(x0) + cokriging error

we see that x belongs to the interface if and only if T*(x) – T*(x0)
is equal to minus the cokriging error, or equivalently if R(x) is
equal to minus the standardised cokriging error (the ratio of the
error by σCK(x)). The value of that error is not known but it is a
variable with zero mean and unit variance.

For example, assuming again that the potential field is
Gaussian, the area defined by |R(x)| <2 includes about
95 per cent of the actual interface. Figure 3 displays R(x) for the
top of the lower gneiss unit in the Limousin. The black line
corresponds to R(x) = 0, ie to the isovalue surface of the cokriged
potential field passing by the data points sampled on that
interface. The true interface is likely to be found in the
light-coloured area, whereas the darkest area can be considered
as a forbidden area.

PRACTICAL IMPLEMENTATION ISSUES

The potential-field method has been implemented in 3D
Geological Editor, software developed by BRGM (the French
geological survey). In order to model real-world situations a
number of practical implementation issues had to be solved.

Modelling several interfaces

In practical applications several interfaces shall be modelled, and
all of them are not subparallel. Several potential fields are then
used. A stratigraphic column is defined by the geologist to
determine how to combine the various potential fields. That
column defines the chronological order of the interfaces as well
as their nature, coded as either ‘erode’ or ‘onlap’. An ‘erode’
potential field is used for example to mask the eroded part of the
previous formations or to model an intrusive body.

Faults

Several methods can be envisaged to handle faults. If they
delimit blocks and the potential field is not correlated from one
block to the other, it obviously suffices to process each block
separately. Another conventional technique is to consider faults
as screens. This technique cannot be used in unique
neighbourhood. The method used in 3D Geological Editor is thus
different. It is a transposition to 3D potential fields of the method
proposed by Maréchal (1984) to handle faults in the 2D
interpolation of the elevation of interfaces, where faults are
entered as external drift functions. This method requires the
knowledge of the fault planes and also of the zones of influence
of the faults.

Let us start with a very simple example, a normal fault
intersecting the whole study zone and dividing it in two subzones
D and D'. That fault induces a discontinuity of the potential field,
whose amplitude is not known. Cokriging can accomodate that
discontinuity whatever its amplitude by introducing a drift
function complementing the L polynomial drift functions, for
example:

f L+1(x) = 1D(x),

or equivalently, in a symmetrised form:

f L+1(x) = 1D(x) – 1D'(x).

If the polynomial drift functions include the monomial
f 1(x) = x (first coordinate) due to the presence of a linear trend of
the potential field, and we have good reasons to suspect not only
a discontinuity but also a change of slope of the drift when
crossing the fault, it is advisable to also introduce an additional
drift function such as:

f L+2(x) = x 1D(x).

A finite fault can be modelled with a drift function with a
bounded support, and whose value vanishes on the support
boundaries; inside that support, the function takes on positive
values on one side of the fault plane, with a maximum at the
centre of the fault, and negative values on the other side. Figure 4
illustrates in 2D how that method takes faults into account.

In real-world applications a fault plane is not exactly a planar
surface. It is often only known by some points on its surface and
unit vectors orthogonal to it. Its geometry can thus be modelled
by a potential field too.

Borehole ends

When processing borehole data, only the intersections of the
boreholes with the interfaces are usually entered as data, whereas
the borehole also carries the information that all the points
between two successive interfaces belong to the same horizon.
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FIG 3 - Representation of the uncertainty of the top of a geological
unit by the variable R(x) (upper gneiss unit, Limousin). The data

(geological map and structural data) are all located on the
topography. Top: map of a zone of 65 km × 65 km in the horizontal
plane with elevation 500 m; bottom: vertical E-W cross-section with
62 km extension and 34 km depth. The black curve represents the
kriged interface. The true interface is in fact in the shaded zones,

with a smaller probability as the zone is darker. The darkest zones
can be considered as exclusion zones (Aug, 2004).



That additional information is usually redundant, so it can be
legitimately disregarded. A noticeable exception is the end of a
borehole: it does not coincide with an interface and gives the
information that the next interface is deeper than the borehole. It
is important to take that information into account, because
otherwise the model can place the interface at a lower depth than
the borehole. If that interface is modelled by a 2D interpolation
of its elevation, such information is simply an inequality about
the elevation value at the (x, y) location of the borehole. In the
case of a 3D modelling of a potential field, it can also be
expressed as an inequality about a potential-field increment.

Such inequalities can be taken into account by first replacing
the inequality data with hard data and then applying the standard
cokriging method. The critical step is of course the first one. The
hard value replacing an inequality datum must be consistent with
the inequality and all the other data (the hard data and the other
inequality data) and with the spatial variability of the potential
field. The method is rigorous when the inequality is replaced by
the mathematical expectation of the potential increment
conditional on all the hard and inequality data (Freulon and de
Fouquet, 1993; Chilès and Delfiner, 1999). This is done with an
iterative method, which is a direct application of the Gibbs
sampler. Note that contrary to the usual potential field data, this
new increment data is not equal to zero.

The practical implementation of the iterative process is based
on a simple kriging algorithm. It is rigorous if the potential field
is a Gaussian random function with known mean, because in that
case kriging coincides with the conditional expectation. A
Gaussian assumption does not look unnatural in our applications,
but the potential fields considered usually include an unknown
global drift. Aug (2004) has shown that the algorithm remains
robust in the applications we consider when simple kriging is
replaced by an ordinary or universal cokriging of our data.
Figure 5 illustrates the consequences of using or not using that
algorithm.

Coupling with an inverse modelling of
geophysical data

In geological and mining exploration applications, seismic
profiles as well as gravity and magnetic data are often available.
Interpreted seismic cross-sections directly provide data that can
be processed by 3D Geological Editor. This is not the case for
gravity and magnetic data. Presently, the geological model
provided by the use of the potential-field method is considered as
the initial state of a constrained inverse modelling of this data.

That inversion is based on an iterative method presented by
Guillen et al (2004), which is applied to a discrete version of the
domain under study. The domain is subdivided in cubic cells,
with a geological formation and a physical property (density or
magnetic susceptibility) attached to each cell. At the initial state
the formation derives from the potential-field model, and the
value of the physical property, eg density, is randomly chosen in
an a priori distribution for that formation. The gravity response
of the model at the location of the gravity data is computed. A
cell is then randomly chosen and a tentative new state is
proposed by changing the formation and/or density of that cell (a
formation change is proposed only if it does not alter the
topology of the model); that tentative state is accepted as a new
state according to whether or not it improves the response of the
model in comparison with the gravity data. That procedure is
iterated millions of times. In fact the decision of accepting or not
accepting a proposed state is taken according to a
Metropolis-Hastings dynamic, which accepts some deterioration
of the gravity response of the model, especially in the early
iterations, to avoid a convergence of the algorithm to a local
optimum.

APPLICATION TO THE BROKEN HILL DISTRICT

3D Geological Editor has been mainly used for geological
modelling at a regional scale, especially in the Alps and the
Massif Central. We present here the results of an application to
geological data from the Broken Hill district, Australia.

Geological context

The project area is a 20 km × 20 km area (Figure 6) extending to
a depth of 5 km. The rock units and their relationships, listed in
Table 1, are based on the GSNSW synthesis (Willis, 1989); it is
noted, however, that there is the possibility of major structures
within the stratigraphy (Noble, 2000; Gibson and Nutman,
2004).

Two geological questions concerning the geometry of these
units were posed at the beginning of this study:

1. Do the major units flatten at depth?

2. What is the relative importance of the different units and
are they regionally extensive?

The objective was therefore to use the geological modelling
tool to evaluate various geological hypotheses.
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FIG 4 - Handling faults. Top: data points located on two interfaces
and structural data; middle: model built without introducing any

fault; bottom: model taking faults into account.
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FIG 5 - Handling borehole ends. Left: end of borehole B2 not taken
into account; right: end of borehole B2 taken into account.



3D Geological Editor allows the rapid construction and editing
of 3D geological models that are based on input observations,
supplemented by various hypothetical observations. The 3D
volumetric model proposed by Pasminco (Archibald et al, 2000)
was used as a starting point.

Lithology

The published geological map (Willis, 1989) was a primary input
along with five regional-scale geological cross-sections. A
seismic section was also used as a backdrop for digitising
‘observations’ for the Rift unit (Gibson et al, 1998). The final 3D
model is shown as a geological map in Figure 6, and on Section
N6 in Figure 7 and Section N7 in Figure 8.

The Alma Gneiss is an intrusive body. Note that it is presented
to 3D Geological Editor as being at the top of the sequence, with
an erosional relationship, to be properly represented.

Structure

Management of faults is a key issue in constructing a realistic 3D
geological model. The number of faults introduced into the
model was minimised. It was found that a satisfactory geological
model at this broad scale could be constructed with just two
faults. Other more extensive and detailed models with up to ten
faults are in preparation. Complex structural effects of the
Broken Hill terrain that are represented in the model include
‘retrograde’ shears, high temperature shears, boudinage and
transposition.

The 3D geological model encompasses a parallelepiped 20 km
long, 20 km wide and 5 km deep (Figure 9). More details are
given by Guillen et al (2004), along with a constrained gravity
inversion where that model is considered as the a priori
geological model.

DISCUSSION

The potential-field method has now reached a development level
that enables it to model real-world situations, even in complex
cases. For example, Maxelon (2004), and Maxelon and
Mancktelow (in press), used it to model foliation fields and a
juxtaposition of nappes with a strong folding in the Lepontine
Alps. Some issues deserve a mention, as follows.

Rather than a cokriging we can be interested in conditional
simulations. The method can be straightforwardly generalised to
conditional simulations if we assume that the potential fields are
Gaussian, which is not a strong assumption in this kind of
application.

The covariance fitting has some part of uncertainty. To take it
into account, a Bayesian approach has been developed by Aug
(2004). It consists in defining an a priori distribution for the joint
distribution of the covariance parameters and defining the
corresponding distribution from the data. That posterior
distribution can be incorporated in the cokriging or conditional
simulation process.

A better integration of the geometric modelling and the
geophysical inversion would be welcome. This could be done by
starting from a conditional simulation of the geometric model
and defining the state changes with regard to the uncertainty of
that geometric model, to the spatial structure of the potential
field, and to the spatial structure of the physical variables.

Last but not least, the gradient of a random function is only by
chance a unit vector. Considering the vectors defined by the
structural data as unit vectors is thus somewhat abusive. The
ideal would be to sample both a structural direction and a
structural intensity, but this is possible only in very specific
cases. Aug (2004) has shown on simulations of actual situations
that replacing actual gradients by unit vectors usually has a
minor impact on the determination of the covariance and the
cokriging. It could be useful, however, to improve the inference
method, which could be done at least with the use of simulations.
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FIG 6 - Plan view of the Broken Hill geological model. The shades
correspond to the geological units shown in Table 1. The presence

of a fault is indicated by a white line. The location of Section N6
(Figure 7) and the seismic line are shown as black lines. The

project covers an area 20 km x 20 km, with the coordinates for the
top-left corner being 535000E 6470000N (GDA94, MGA54).

TABLE 1
Geological units, relationships.

FIG 7 - Section N6 through the 3D model. (Length: 20 km; Depth:
5 km; V/H=1). The shades of the units are as shown in Table 1.
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FIG 8 - Part of the geological cross-section N7. Various ‘layers’ can be presented in 3D Geological Editor’s map and section presentations,
and each of these can be turned ‘on’, or ‘off’ (a). Image (b) shows the model geology rendered as lines onto the geologist’s original

working section. Image (c) shows the model geology as lines, together with the orientation data. Image (d) shows the model geology
as solid-geology. The user can control the plotting resolution, to achieve either fast plots, or high-resolution images, such as this one.

Section length: 12.7 km, V/H=1.

FIG 9 - Perspective view of the 3D geological model, viewed from the northeast and south west. The shades of the units are
as shown in Table 1.
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