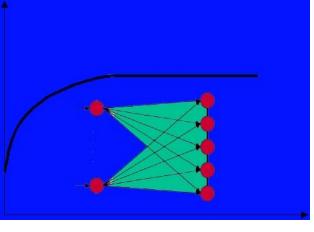
GeoNeurale

announces


Advanced Carbonate Petrophysics

GATE – Garchinger Technologie und Gründerzentrum

 \rightarrow 4 – 8 October 2010 in Munich

GeoNeurale

Advanced Carbonate Petrophysics

MUNICH

at the

GATE – Garchinger Technologie und Gründerzentrum

4-8 October, 2010

5 DAYS COURSE

Registration deadline: 10 September 2010

4000 PAGES PROGRAM

INSTRUCTOR: Dr. Robert E. Ballay

LEVEL: Advanced / Specialized

AUDIENCE: Petrophysicists, Geophysicists, Reservoir Engineers, Geologists, Team Leaders,

Managers Geoscientists.

COURSE FEES: Euro 2700 + VAT (19%)* * INFORMATIONS FOR VAT TAX REFUND

(The VAT Tax is 100% refunded by the German Ministry of Finances)

ONLINE REGISTRATION: www.GeoNeurale.com

gate

GeoNeurale

Office

and

Training Location

COURSE PREPARATION

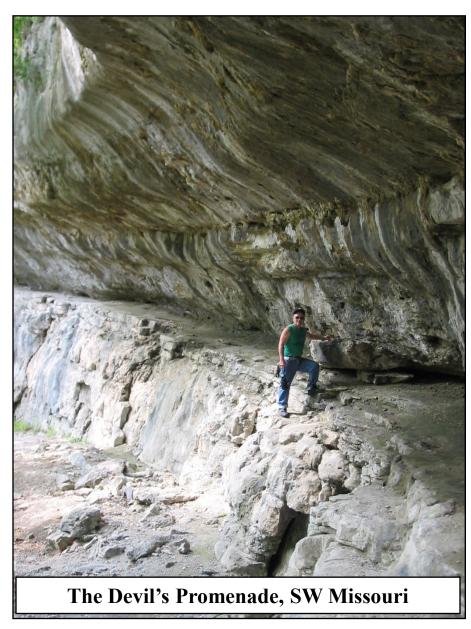
Due to the advanced character of this course and to the very wide program to be covered in the 5 days course, an online preparation program will start at least two weeks before the course to assist those delegates who would like to review the background theory necessary to face the course with solid concepts of Carbonate Petrophysics, and related Geostatistics, Heterogeneity and Uncertainty issues.

Advanced Carbonate Petrophysics			Slide Count
		ate Petrophysics	3460
	Chapter 1		
	Introduction		48
COURSE OVERVIEW	Carbonate vs Sandstone		25
This five-day course is for	Thin Sections Chapter 2		20
Engineers, Geologists and Team	Lucia Petrophysical Classi	fication	112
Leaders who require <i>an</i>	Capillary Pressure		67
understanding of the	Chapter 3		
	CT-Scan		37
complexities of open-hole	Spontaneous Potential Log)	16
carbonate log analysis.	Gamma Ray Log		78
Participants will learn to	Chapter 4		00
characterize rock quality	Sonic Log		69
1	Chapter 5 Bulk Density Log		121
visually (thin sections, CT-scan,	Chapter 6		121
etc) <i>and numerically</i> (routine	Neutron Log		90
core analyses, capillary pressure,	Chapter 7		00
etc) and to then <i>relate</i> those	MultiMineral Porosity Cros	splots	58
,	Specialty Sonic		73
results to both routine and	Porosity Log QC & Normal	ization	13
specialty open-hole log	Porosity – Mineralogy from	Core Data	22
responses. The complementary	Laboratory Mineralogy (XR	D, XRF, etc)	41
nature of the various tools and	Laboratory Evaluation of C	•	79
	Permeability from Core Da	ta	10
techniques are discussed and	Chapter 8		
illustrated with actual carbonate	Resistivity from Logs		48
data.	Archie 'm' Exponent		62
	Archie 'n' Exponent		44
© 2006 Robert E Ballay, LLC	Quick Look Techniques Pickett Plot	- Continued Following Page	24 :- 86

	Chapter 9 - Continued From Preceding Page -		
	Pulsed Neutron Log	96	
	Log-inject-log with Pulsed Neutron Logging	35	
A DOLLT THE COLIDGE	Chapter 10	113	
ABOUT THE COURSE	Nuclear Magnetic Resonance-Basic		
	Nuclear Magnetic Resonance-Carbonate	115	
Carbonate petrophysics begins with a	Chapter 11		
contrast of carbonates and sandstones,	Dielectric Tools	96	
followed by <i>reservoir classification</i>	Chapter 12		
according to the Lucia Petrophysical	Image Logs	73	
Classification methodology. Thin sections	Borehole Gravity Meter	38	
and CT-Scans are used for visualization	Pressure Profiles	45	
while capillary pressure serves to <i>quantify</i>	Chapter 13		
the differing properties.	Field Determination of Archie Exponents	40	
Individual logging tools (both routine and	Primary vs Vuggy / Fractured Porosity	86	
specialty) are introduced; carbonate	Light Hydrocarbon Effects	93	
responses are illustrated with actual data.	Chapter 14		
-	Comparison of Vuggy Porosity Evaluation Techniques	591	
Archie's exponents are discussed within	Rock Quality and Cutoffs	122	
the context of both his original data sets,	Quick Look Case Histories		
and carbonate specific measurements.	Arabia	34	
The complementary attributes of each	Iran	14	
tool and technique are used to identify	Chapter 15		
and evaluate complex carbonate	Field Studies		
reservoirs, as illustrated with actual	Madden Deep Field, Madison Formation, Wind River Basin	55	
applications.	Cabin Creek Field, Red River Formation, Williston Basin	47	
	Jay Field, Smackover Formation, Gulf Coast Basin	49	
	Weyburn Field, Mission Canyon Formation, Williston Basin	124	
	Cementation Exponents & Pore Geometry	126	
	Chapter 16		
	Linear Correlation	63	
© 2006 Robert E Ballay, LLC	Summary	25	

YOU WILL LEARN HOW TO

Recognize the key distinctions between carbonates and sandstones, and understand the implications of those differences upon modern logging tool responses and formation evaluation methods


Perform both quick-look and detailed

interpretations, taking into account carbonate complexities

Design a *cross-discipline formation evaluation program* that will characterize the interpretational parameters associated with a specific reservoir, and facilitate complete analyses

Appendix

Formation Evaluation: Carbonate vs Sandstone	19
Up vs Down: Pipe-conveyed (Carbonate) Wireline Data QC	14
Capillary Pressure in the Ghawar Arab D Carbonate	6
Azimuthal Density Images (Carbonate Application)	15
Multi-dimensional Petrophysics (Carbonate Application)	11
Carbonate Depositional Settings (with animations)	72

Day 1				Day 2			
Start	Stop	Duration	Topic	Start	Stop	Duration	Topic
830	915	45	Course Introduction		•		•
915	930	15	Carbonate vs Sandstone	830	945	75	Sonic in Carbonate (+ Exercise)
930	945	15	Break	945	1000	15	Break
945	1000	15	Thin Sections	1000	1100	60	Carb Rhob / Pef (+ Discussion Exmpls)
1000	1045	45	Lucia Petrophysical Classification	1100	1115	15	Break
			' '	1115	1145	30	Carb LWD Rhob / Pef
1045	1100	15	Break	1145	1200	15	Carbonate Neutron
1100	1200	60	Lucia Classification (+ Exercise)	1200	1300	60	Lunch
1200	1300	60	Lunch				
1300	1400	60	Capillary Pressure (+ Exercise)	1300	1345	45	Carb Neutron (+ Discussion Exmpl)
1400	1415	15	Break	1345	1400	15	Break
				1400	1500	60	Identification of Vuggy Porosity
1415	1500	45	Rock Quality and Cutoffs	1500	1515	15	Break
1500	1515	15	Break	1515	1615	60	Specialty Sonic in Carbonate
1515	1545	30	CT Scan with Carb Examples				
1545	1615	30	GR in Carbonate (+ Discussion Exmpl)	1615	1630	15	Review and Feedback
1615	1630	15	Review and Feedback				

Day 3				Day 4			
Start	Stop	Duration	Topic	Start	Stop	Duration	Topic
830	915	45	Phi / Mineralogy from Core	830	900	30	Quick Look Techniques
915	945	30	XRD/XRF/etc Mineralogy	900	930	30	Pickett Plot
945	1000	15	Break	930	945	15	Break
1000	1045	45	Resistivity Tools & Constraints	945	1030	45	Pickett Plot
1045	1100	15	Archie's 'm' Exponent	1030	1045	15	Pulsed Neutron Log
1100	1115	15	Break	1045	1100	15	Break
1115	1200	45	Archie's 'm' Exp (+ Discussion Exmpl)	1100	1200	60	PNL (+ Discussion Exmpl)
1200	1300	60	Lunch	1200	1300	60	Lunch
1300	1345	45	Cmnt Exp Variations & Pore Geometry	1300	1345	45	PNL Log-inject-log
1345	1415	30	"m" Estimates From Vuggy Porosity Ratio	1345	1400	15	Break
1415	1430	15	Break	1400	1445	45	BH Gravity Meter
1430	1500	30	"m" Estimates From Vuggy Porosity Ratio	1445	1530	45	Pressure Profiles
1500	1530	30	Archie's "n" Exponent (+ Exercise)	1530	1545	15	Break
1530	1545	15	Break	1545	1615	30	Linear Correlation
1545	1615	30	Low Resistivity Pay in Carbonates	1615	1630	15	Review and Feedback
1615	1630	15	Review and Feedback				

Day 5			
Start	Stop	Duration	Topic
830	945	75	Image Log (+ Exercise)
945	1000	15	Break
1000	1030	30	Dielectric Log (+ Exercise)
1030	1045	15	Wireline "m" Estimates Compared to Core
1045	1100	15	Break
1100	1200	60	Basic NMR (+ Exercise)
1200	1300	60	Lunch
1300	1315	15	Basic NMR (Hydrocarbon Effects)
1315	1400	45	Carbonate NMR
1400	1415	15	Break
1415	1500	45	Carbonate NMR (+ Exercise)
1500	1530	30	Core Calibrated Wireline "m" Estimates
1530	1545	15	Break
1545	1600	15	Daily Review and Feedback
1600	1615	15	Jerry Lucia: Here is how it works
1615	1630	15	Course Summary

Lucia Petrophysical Classification

Petrophysical Classification of Carbonate for Reservoir Characterization

Cementation Exponent Variations & Pore Geometry

Focke & Munn's classic work

Cementation Exponent ranges from 2 => 5, dependant upon Vuggy / Total Porosity Ratio Laboratory data interpreted within context of pore geometry illustrations

Carbonate NMR

E. Toumelin, C. Torres-Verdín, S. Chen, and D. M. Fischer

Reconciling NMR Measurements and Numerical Simulations: Temperature & Diffusive Coupling

E. Toumelin, C. Torres-Verdín and S. Chen

Modeling of Multiple Echo-Time NMR Measurements for Complex Pore Geometries

J. O. Parra, C. L. Hackert, H.A. Collier and M. Bennet

NMR and Acoustic Signatures in Vuggy Carbonate

C. L. Hackert and J. O. Parra

Simulating NMR Magnetization Diffusion in a Real Carbonate Pore System

Vuggy Porosity Techniques

Wang & Lucia's classic review, including theory and application to actual data

Estimation of Vuggy Porosity Fraction

Secondary Porosity Index (Generalized, Sonic vs Total Porosity)

Nurmi's Model (Originally developed for oomoldic grainstones in the Smackover)

Quadratic Model (Combination of SPI & Nurmi)

Power Law (Combination of SPI & Nurmi)

Estimation of Cementation Exponent

Lucia Model

Nugent Model

Asquith Model

Pickett Plot

PP linked to grids of BVW=Constant as lead-in to NMR

G R Pickett "A Review of Techniques for Water Saturation from Logs

Roberto Aguilera , Incorporating ... and Winland r35 values on Pickett plots www.spec2000.net/index.htm

www.kgs.ku.edu/Gemini

TRAINING MATERIAL: MANUALS NOTES AND INFORMATIONS

1) ACP-PRESENTATION-GeoNeurale

The sequence of the presentation Slides during the course 11 PDF Files, about 3100 Slides.

2) ACP-MANUAL-GeoNeurale

The full Manual containing the course theory and reference topics.

16 PDF Files, about 3500 Slides.

3) ACP-EXERCISES-GeoNeurale

The Exercises and explainations of the practical applications.

5 PDF Files, about 220 Slides

4) ACP-FRAC FLOWCHART-GeoNeurale

Useful illustration for Fracture Classification and Interpretations

2 PDF Files

5) ACP-SOFTWARE-GeoNeurale

Excel Spreadsheet Programs for quick calculations of petrophysical properties.

30 Microsoft Excel Files

6) ACP-Appendix-GeoNeurale

Reference Papers, useful literature and case studies.

7 PDF Files.

7) ACP-Video-GeoNeurale

A video illustrating various imaging features of borehole imaging

interpretation. 1 Video File

We suggest to have Acrobat Reader already installed in your laptop. You will need no administration password to open the files. We also suggest to have Microsoft Excel already installed so that you will be able to run your spreadsheet programs if you wish to do it during the course. If you don't have Excel you can download any freeware software like OpenOffice of the Sun Microsystems platform: www.openoffice.org A video program will also be useful for the video clip. All terms are keyword searchable.

- Sandstone Diagenesis typically limited to compaction and cementation
- Carbonate Diagenesis includes cementation, compaction, dolomitization, and dissolution

The Natural Bridge (from distance, see the light in the background) and then up close, looking 'under the bridge' into the sink hole beyond

R. E. (Gene) Ballay's 30 years in petrophysics include research and operations assignments in Houston (Shell Research), Texas; Anchorage (ARCO), Alaska; Dallas (Arco Research), Texas; Jakarta (Huffco), Indonesia; Bakersfield (ARCO), California; and Dhahran, Saudi Arabia. His carbonate experience ranges from individual Niagaran reefs in Michigan to the Lisburne in Alaska to Ghawar, Saudi Arabia (the largest oilfield in the world).

He holds a PhD in Theoretical Physics with double minors in Electrical Engineering & Mathematics, has taught physics in two universities, mentored Nationals in Indonesia and Saudi Arabia, published numerous technical articles and been designated coinventor on both American and European patents.

At retirement from the Saudi Arabian Oil Company he was the senior technical petrophysicist in the Reservoir Description Division and had represented petrophysics in three multi-discipline teams bringing on-line three (one clastic, two carbonate) multi-billion barrel increments. Subsequent to retirement from Saudi Aramco he established Robert E Ballay LLC, which provides physics - petrophysics consulting services.

Registration Details

•Course fees: Euro 2700 + VAT (MwSt: 19%)* * INFORMATIONS FOR VAT TAX REFUND

•Registration deadline : 10 September 2010

Payment and Registration

Tuition fees are due and payable in Euro upon enrollment in the course by bank transfer to the bank account given below unless another payment form is agreed. Unless otherwise agreed, the payment should be received before the date specified in the invoice as payment term to make

the enrollment effective.

To register to the course please fill in the registration form and fax or email it along with the confirmation of your bank transfer to:

GeoNeurale

Lichtenbergstrasse 8

85748 Munich - Garching

T +49 89 8969 1118

F +49 89 8969 1117

ONLINE REGISTRATION: www.GeoNeurale.com

Bank Information: Genossenschaftsbank EG Muenchen

Bank Account N. 519618 BIC - Code: GENODEF 1M07

BLZ 701 694 64 IBAN: DE19 7016 9464 0000 5196 18

Please indicate your name and the purpose: "Advanced Carbonate Petrophysics".

*VAT (MwSt: 19%). The added value tax (VAT) can be fully refunded to your company from the German Finance Ministry provided that the company has an International Tax ID Number. This can only apply for companies outside Germany.

www.GeoNeurale.com

•PLEASE READ or DOWNLOAD the INFORMATIONS: INFORMATIONS FOR VAT TAX REFUND

Provisions

- Tuition fees are due and payable in Euro upon enrollment in the course. Unless otherwise indicated, fees do not include student travel costs and living expenses.
- Payments are also accepted via personal or company check, traveler's check, credit card, and Company Purchase Orders.
- Cancellations by Participant:
- All cancellation are subject to a 100 Euro non-refundable cancellation fee.
- Cancellation have to be notified to our office, at least 30 days prior to the course start date to receive a refund (less the 100 Euro cancellation fee).
- If the participants are unable to cancel prior to the 32 days notification date, they may substitute another person at their place in a course by notifying us prior to the course start date.

Course Cancellations:

GeoNeurale reserves the right to cancel the courses if necessary. The decision to cancel a course is made at least two weeks prior to the course start date. If a course is cancelled, the participant will receive a full reimbursement of the tuition fees (but not of the plane ticket or hotel expenses or any other costs), or will be enrolled in another course upon his decision (the cost of the original course will be applied to the cost of the replacement course).

GeoNeurale can not be responsible for any penalties incurred for cancellation or change of airline or hotel reservations.

Refunds:

GeoNeurale will promptly remit all refunds of tuition fees due to cancellations or annullment (less any appropriate non-refundable cancellation fee) within 30 days of the course cancellation.

Force Majeure:

GeoNeurale can not be responsible for cancellations due to "force majeure" events: airplane or airport strikes, emergency situations, natural catastrophes and all situations and incidents independent or outside the human control that can delay or cancel the course. In case of such events related cancellations the course tuition fees will be refunded to the client.

Geoneurale is not responsible for any delay or absence caused by the training instructor or training instructor company for reasons which are independent or out of the control of GeoNeurale s decisions.

AGREEMENT: Upon enrollment all parts accept the above mentioned provisions. The above specified provisions shall regulate the agreement between GeoNeurale and the participant and the participant company and will enter into force upon enrollment.

REGISTRATION FORM

Please fill out this form and Fax to +49 89 8969 1117 or Email to Courses@GeoNeurale.com

ADVANCED CARBONATE PETROPHYSICS

Munich, 4 - 8 October, 2010

Course Fee: Euro 2700 + VAT (19%)* (The VAT Tax is 100% refunded by the German Ministry of Finances)

Name:			
Company:			
Address:			
Job Title:			
Phone:			
Fax:			
Email:			
	CICNATURE.		

INFORMATIONS, HOTELS, MAPS, LINKS

TRAINING LOCATION - RESEARCH CENTER

http://www.geoneurale.com/documents/GATE-Y7.pdf

GATE GARCHING

http://www.geoneurale.com/documents/GATE-Y6.pdf

MAP MUNICH-GARCHING

http://www.muenchen.city-map.de/city/db/130208000001/14269/Garching.html

MUNICH INFO and MAP MUNICH CENTRAL

http://www.muenchen.de/home/60093/Homepage.html

MAP MUNICH UNDERGROUND

http://www.mvv-muenchen.de/web4archiv/objects/download/3/netz1207englisch.pdf

HOTELS NEAR GeoNeurale

http://www.geoneurale.com/documents/HOTELS-GARCHING.pdf

BAVARIA INFO

http://www.geoneurale.com/documents/Around-Munich-Info.pdf

- •Munich, the capital of Bavaria with a population of 1.5 million is the third largest city in Germany. Headquarters to industrial giants like BMW, Siemens, MAN, EADS, Eurocopter, Infineon and Epcos it also hosts two of the most important universities in Germany: the "Technische Universitaet Muenchen" and the "Ludwig Maximilian Universitaet", with international research centers such as the "Max Plank Institut" and the "Fraunhofer Gesellschaft".
- •Geologically important is the presence of carbonate formations in the subsoil that are very favourable for low enthalpy geothermal exploitation, which requires the solution of complex petrophysical problems, similar to Oil Exploration.
- •GeoNeurale, the society for the Geosciences applications of Geostatistics and Neural Networks promotes the development of modern interpretation methods for reservoir analysis.

